Crash: Difference between revisions

Content deleted Content added
m Reverted edits by X1313e (talk) to last version by Gymnasiast
Line 56: Line 56:
Crashes are preventable on most non-roller coaster rides and roller coasters with unattached cars by simply designing them well. Make sure that vehicles don't crest hills too quickly on rides where the vehicles are unattached, and always test ride designs with an incomplete circuit layout, such as powered launch and reverse-incline launched shuttle loops.
Crashes are preventable on most non-roller coaster rides and roller coasters with unattached cars by simply designing them well. Make sure that vehicles don't crest hills too quickly on rides where the vehicles are unattached, and always test ride designs with an incomplete circuit layout, such as powered launch and reverse-incline launched shuttle loops.


In RCT1, it is difficult to completely prevent crashes caused by the "Station Brakes Failure" breakdown. The easiest way to prevent such crashes is to remove all but one car/train from the ride, though this reduces the number of guests that can ride at once, and thus lowers the ride's profitability. Contrary to popular belief, adding brake sections to the track to slow down a car/train before it enters the station does not prevent a crash from happening since brake sections also do not work during a "Station Brakes Failure" breakdown, although it does reduce the chances of the breakdown occurring in general (most likely due to the speed at which a car/train enters the station having an effect on the durability of the station brakes). One way to keep the duration (and, in the short-term, likelihood) of breakdowns low is to set the inspection time for rides to "Every 10 minutes", and placing a mechanic right at the exit of each ride with a patrol path on the exit of the ride. This reduces the rate at which the ride's reliability drops, and in the event of a brakes failure, the mechanic is right there to quickly respond and fix the ride. A different way to prevent crashes is to make sure that there will only ever be one train in or near the station or on lift hills by adjusting the ride's minimum and maximum wait times. The ideal amount of minimum and maximum wait time varies per ride, and there are no universal safe values or easy formula for safe times; the best way to find out good times is to experiment. Another option is to design the ride such that its cars always traverse hills and drops and approach and enter the station at safe speeds even during breakdowns, eliminating any chances of a crash.
In RCT1, it is difficult to completely prevent crashes caused by the "Station Brakes Failure" breakdown or crashes caused by a stall as the result of a "Safety Cut-out" breakdown. The easiest way to prevent such crashes is to remove all but one car/train from the ride, though this reduces the number of guests that can ride at once, and thus lowers the ride's profitability. Adding "brake runs" (sections of track filled with brakes) can also reduce the speed of the cars midway through the track or right at the end, giving the cars less momentum and possibly preventing a crash; an additional effect of having brake sections on the track is that they reduce the chances of a "Station Brakes Failure" breakdown occurring. One way to keep the duration (and, in the short-term, likelihood) of breakdowns low is to set the inspection time for rides to "Every 10 minutes", and placing a mechanic right at the exit of each ride with a patrol path on the exit of the ride. This reduces the rate at which the ride's reliability drops, and in the event of a brakes failure, the mechanic is right there to quickly respond and fix the ride. A different way to prevent crashes is to make sure that there will only ever be one train in or near the station or on lift hills by adjusting the ride's minimum and maximum wait times. The ideal amount of minimum and maximum wait time varies per ride, and there are no universal safe values or easy formula for safe times; the best way to find out good times is to experiment. Another option is to design the ride such that its cars always traverse hills and drops and approach and enter the station at safe speeds even during breakdowns, eliminating any chances of a crash.


RCT2 adds block brakes on several roller coaster designs, which can drastically reduce the possibility of crashes on such designs. Block brakes separate the track into "sections", with each block brake on the track acting as the divider between sections. When a car is still travelling around one section, the block brake that divides it from the previous section of track will attempt to completely stop the next approaching car until the car in front has completely passed the next section, failing which it will still slow down the approaching car significantly. Using a block brake system allows many cars to operate on the track without having to build a long station platform to accommodate all of them. In addition, constructing at least one block brake on a ride and setting it to "Continuous circuit block sectioned mode" removes any possibility of a "Brakes Failure" breakdown happening on that particular ride. The only major downside of using block brakes is a small decrease in the ride's excitement rating.
RCT2 adds block brakes on several roller coaster designs, which can drastically reduce the possibility of crashes on such designs. Block brakes separate the track into "sections", with each block brake on the track acting as the divider between sections. When a car is still travelling around one section, the block brake that divides it from the previous section of track will attempt to completely stop the next approaching car until the car in front has completely passed the next section, failing which it will still slow down the approaching car significantly. Using a block brake system allows many cars to operate on the track without having to build a long station platform to accommodate all of them. In addition, constructing at least one block brake on a ride and setting it to "Continuous circuit block sectioned mode" removes any possibility of a "Brakes Failure" breakdown happening on that particular ride. The only major downside of using block brakes is a small decrease in the ride's excitement rating.
Line 63: Line 63:


In RCT3, peeps cannot die under ''any'' circumstances. In addition, cars that impact each other at high speed no longer explode, instead bouncing way from each other upon impact—this completely removes all possibility of a crash arising from two cars colliding with each other at high speed. Crashes can still occur, however, if the train leaves its ride boundary either by overshooting the end of the track (for incomplete circuits) or by flying off a corner while attempting to negotiate it at high speed (for rides with unattached cars). The other negative effects of a crash (such as a decrease in park rating) are also carried over from the previous games. Finally, a crash is considered to have happened the moment the first car leaves the ride boundary, as opposed to the first car exploding after leaving the ride boundary in previous games, although any cars that do leave the ride boundaries will bounce around the surface they impacted (or in the case of water, sink slowly) for a few seconds before actually exploding.
In RCT3, peeps cannot die under ''any'' circumstances. In addition, cars that impact each other at high speed no longer explode, instead bouncing way from each other upon impact—this completely removes all possibility of a crash arising from two cars colliding with each other at high speed. Crashes can still occur, however, if the train leaves its ride boundary either by overshooting the end of the track (for incomplete circuits) or by flying off a corner while attempting to negotiate it at high speed (for rides with unattached cars). The other negative effects of a crash (such as a decrease in park rating) are also carried over from the previous games. Finally, a crash is considered to have happened the moment the first car leaves the ride boundary, as opposed to the first car exploding after leaving the ride boundary in previous games, although any cars that do leave the ride boundaries will bounce around the surface they impacted (or in the case of water, sink slowly) for a few seconds before actually exploding.

[[Category:Strategy Guides]]
[[Category:Strategy Guides]]
[[Category:Descriptions]]
[[Category:Descriptions]]